mean-square contingency - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

mean-square contingency - перевод на русский

AVERAGE OF THE SQUARES OF THE ERRORS BETWEEN ESTIMATED AND ACTUAL VALUES
Mean-squared error; Mean Squared Error; Sum of squared differences; Mean square error; Mean squared deviation; Mean square deviation

mean-square contingency      

статистика

среднеквадратическая сопряжённость

mean square contingency         
TYPE OF COEFFICIENT
Matthews correlation coefficient; Matthews Correlation Coefficient; Mean square contingency coefficient; Mean square contingency; Pearson's phi; Matthews coefficient; Matthews correlation measure; Matthews measure
средняя квадратическая связанность
root-mean-square error         
STATISTICAL MEASURE
Root Mean Squared Error; RMSE; RMSD; Root-mean-square error; Normalized root mean squared deviation; NRMSD; Root mean squared error; RMS error; Root mean square deviation; Root mean square error
средняя квадратическая погрешность

Определение

Тяньаньмынь

площадь в Пекине, административно-политический центр города. Историческое ядро площади - ворота Т. ("Ворота небесного спокойствия", 1651), входившие в комплекс южной стены "Императорского города".

Пекин. Площадь Тяньаньмынь.

Википедия

Mean squared error

In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value. MSE is a risk function, corresponding to the expected value of the squared error loss. The fact that MSE is almost always strictly positive (and not zero) is because of randomness or because the estimator does not account for information that could produce a more accurate estimate. In machine learning, specifically empirical risk minimization, MSE may refer to the empirical risk (the average loss on an observed data set), as an estimate of the true MSE (the true risk: the average loss on the actual population distribution).

The MSE is a measure of the quality of an estimator. As it is derived from the square of Euclidean distance, it is always a positive value that decreases as the error approaches zero.

The MSE is the second moment (about the origin) of the error, and thus incorporates both the variance of the estimator (how widely spread the estimates are from one data sample to another) and its bias (how far off the average estimated value is from the true value). For an unbiased estimator, the MSE is the variance of the estimator. Like the variance, MSE has the same units of measurement as the square of the quantity being estimated. In an analogy to standard deviation, taking the square root of MSE yields the root-mean-square error or root-mean-square deviation (RMSE or RMSD), which has the same units as the quantity being estimated; for an unbiased estimator, the RMSE is the square root of the variance, known as the standard error.

Как переводится mean-square contingency на Русский язык